DATASCIENCESALON

NEWYORK

Causal Design Patterns

Emily Riederer

Senior Manager Analytics & Data Science Solutions Capital One

Causal Design Patterns

Emily Riederer DSS Salon NYC June 7, 2023 Randomized experiments allow for credible measurement

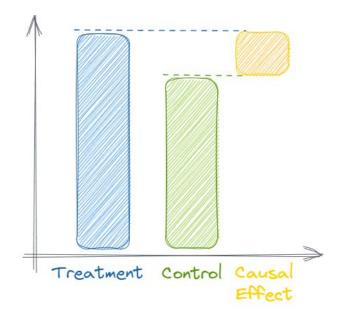
$X X X X \rightarrow T T C T T C C T C C$

Using the spark of randomization,

assign treatment and control groups

to measure a credible causal effect

by comparing their outcomes



Randomized experiments are not always practical

Causal inference helps recreate the 'spark' with historical data

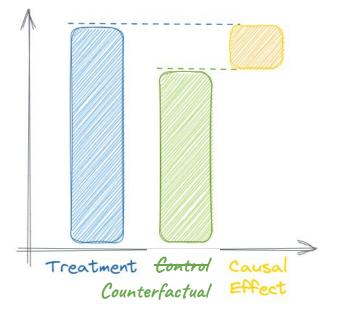
semi-random variation Using the spark of randomization,

+ data & context

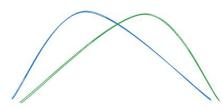
identify those who received the assign treatment and control groups construct a counterfactual 'control'

to measure a credible causal effect

by comparing their outcomes



Industry has distinct advantages when applying causal methods



Semi-random Variation

- Segmentation
- Timing
- Execution
- Natural experiments!

-

Rich Historical Data

- Individual-level
- Integrated, multimodalLongitudinal
- Out-of-time

Domain-Driven Assumptions

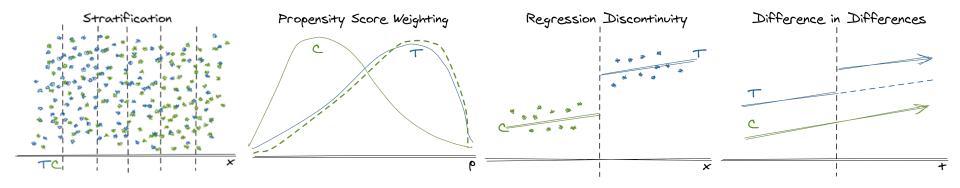
- Context / rationale for decisions, treatment assignments
- Proxies for validation

Agenda

- Common design patterns
- Patterns as building blocks
- Prerequisites for success
- Resources to learn more

Key Design Patterns

Four basic strategies for causal inference

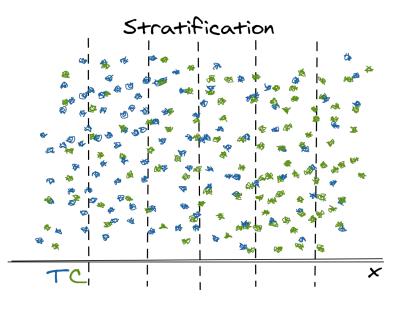


Variation in treatment distribution within a population

Variation across distinct groups

Variation across groups & time

When we have imbalance...



When you have:

- "similar" treated and untreated individuals
- different distributions
- on few relevant dimensions

Tries to:

Bin comparisons into comparable subgroups

Stratification pattern

Recipe:

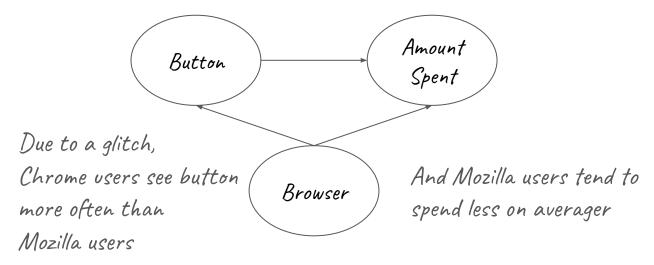
- Bin population by subgroups
- Calculate average effect by group
- Weight average across groups

Assumption:

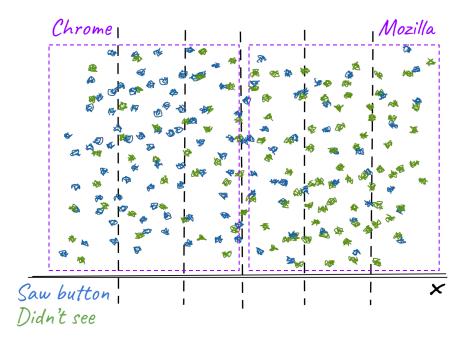
- All common causes of treatment and outcome are observed
- All observations have positive probability of treatment
- Few variables need adjustment

Stratification application

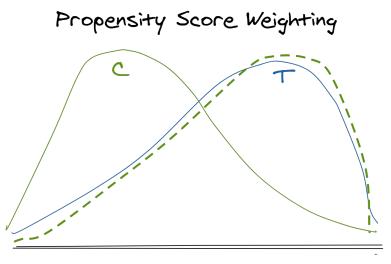
Attempt to A/B test "one-click instant checkout" on Black Friday



Stratification application



When we have imbalance across many dimensions...



- "similar" treated and untreated individuals
- different distributions
- on many dimensions

Tries to:

P(Treatment / Traits)

Rebalance to make groups more comparable

Propensity Score Weighting pattern

Recipe:

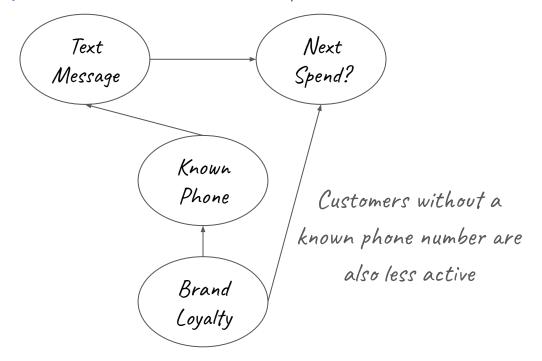
- Model the P(Treatment | Traits)
- Derive weights from predictions
- Calculate average outcome by treatment using weights

Assumption:

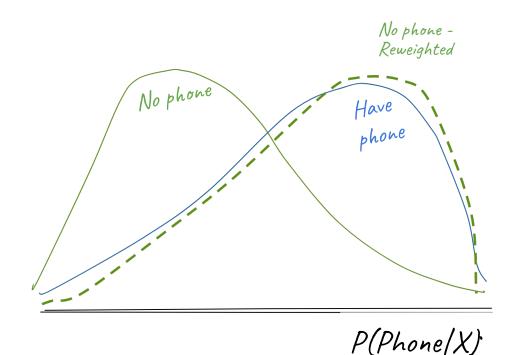
- All common causes of treatment and outcome are accounted for
- All observations have positive probability of treatment

Propensity Score Weighting application

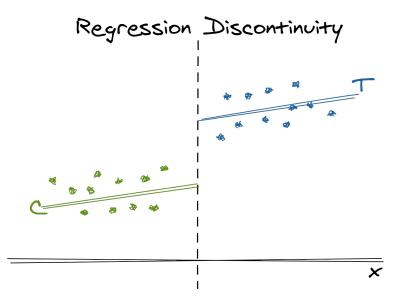
Send text message to <u>all</u> customers with a valid phone number on record



Propensity Score Weighting application



When we have no overlap...



When you have:

- disjoint treated and untreated individuals

- separated by sharp cut-off

Tries to:

Exploit arbitrary variation in treatment assignment at cut-off to evaluate local effect

Regression Discontinuity pattern

Recipe:

- Model Outcome = f(running var)
 on each side of cut-off
- Evaluate models at cut-off value
- The local treatment effect is the difference in estimates

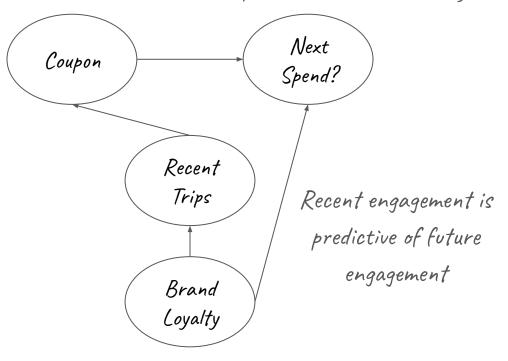
Assumption:

- Assignment rule is unknown to individuals (not gameable)
- Outcome is continuous function of running variable
- Can fit a reasonably

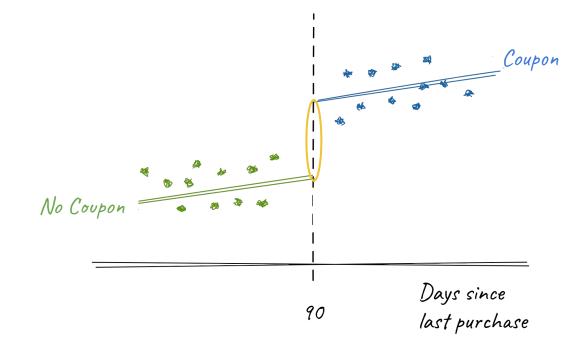
well-specified and simple model

Regression Discontinuity application

Send coupon to customers who've not purchased in last 90 days

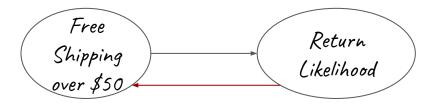


Regression Discontinuity application



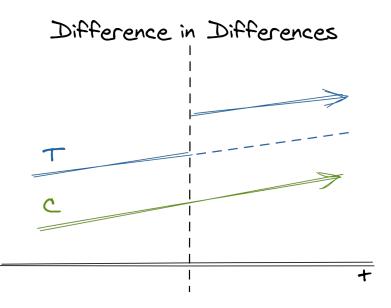
Regression Discontinuity breakdown

Offer free shipping and returns on purchases over \$50



Customers anticipating returns can game a known policy

When we have pre-existing differences...



When you have:

- different baselines in comparison groups

- variation across time (pre/post)

Tries to:

Compare how difference in pre/post behavior differs across populations

Difference-in-Differences pattern

Recipe:

- Take the pre/post treatment difference within each group
- Find the difference in differences between groups
- Technically done as a fixed-effects regression

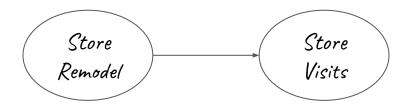
Assumption:

But-for the treatment, groups would have parallel trends

- Decision to treat not influenced by anticipated outcome
- No spill-over between groups

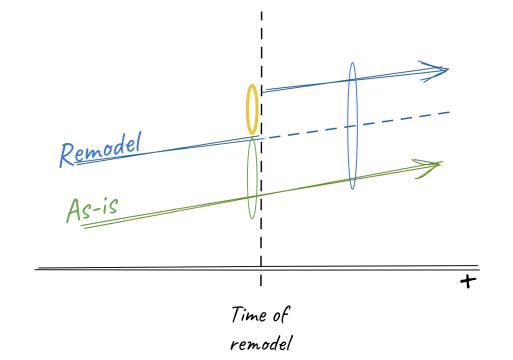
Difference-in-Differences application

Remodel store and want to measure effect on store traffic

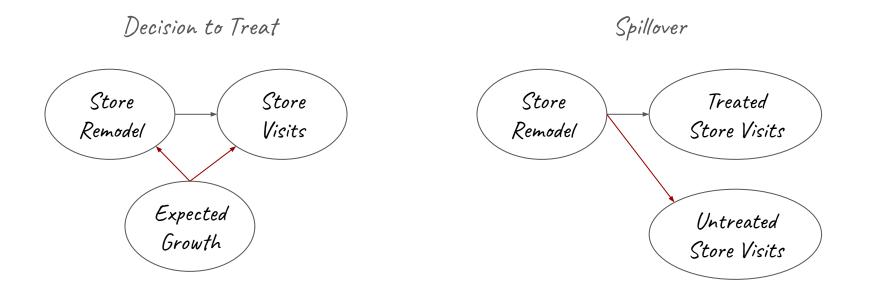


Too capital intensive to experiment!

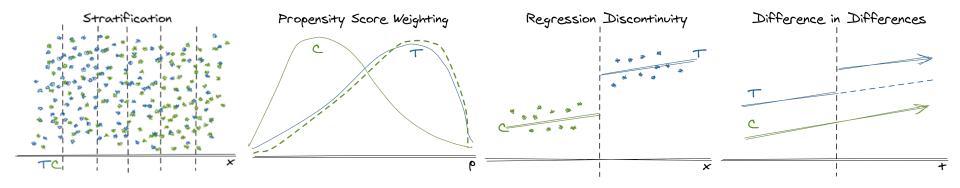
Difference-in-Differences application



Difference-in-Differences breakdowns



Four basic strategies for causal inference



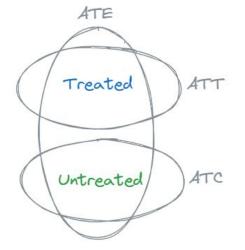
Variation in treatment distribution within a population

Variation across distinct groups

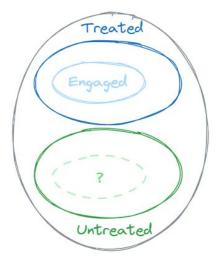
Variation across groups & time

Propensity scores to measure different effects

Different Subgroups



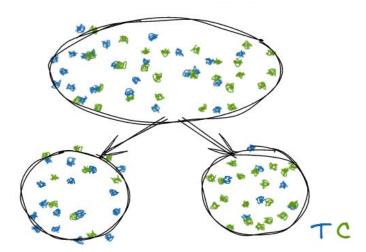
Map propensity scores to different weights for different populations Different Points of Randomization



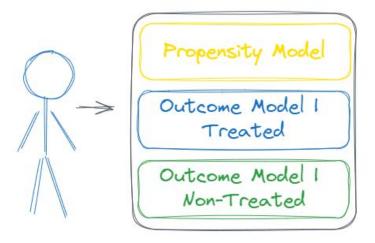
Create counterfactuals for narrower subgroups like campaign opt-ins Propensity scores to estimate individual effects

Causal Forests

Doubly Robust Methods (e.g. AIPTW)

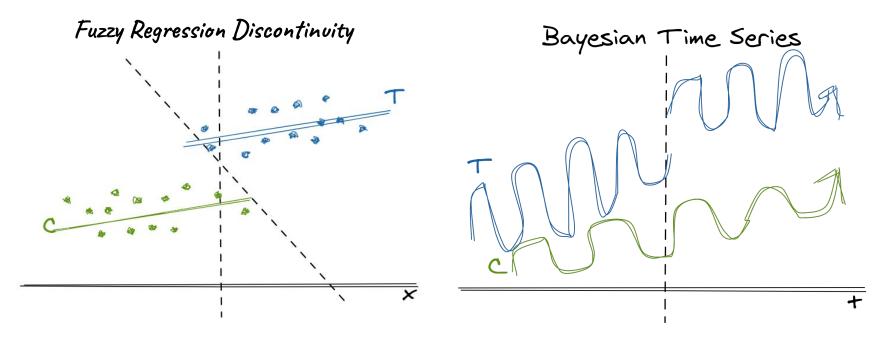


Create balanced experiment within tree nodes



Combine treatment and outcome modelseven if one is mis-specified!

Relaxing RD and Diff-in-Diff assumptions

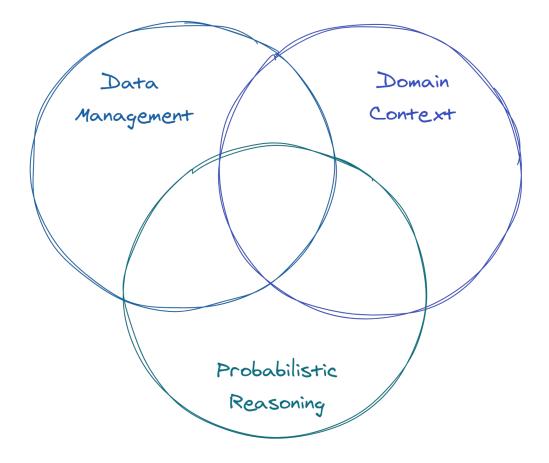


Regression discontinuity with imprecise cut-off

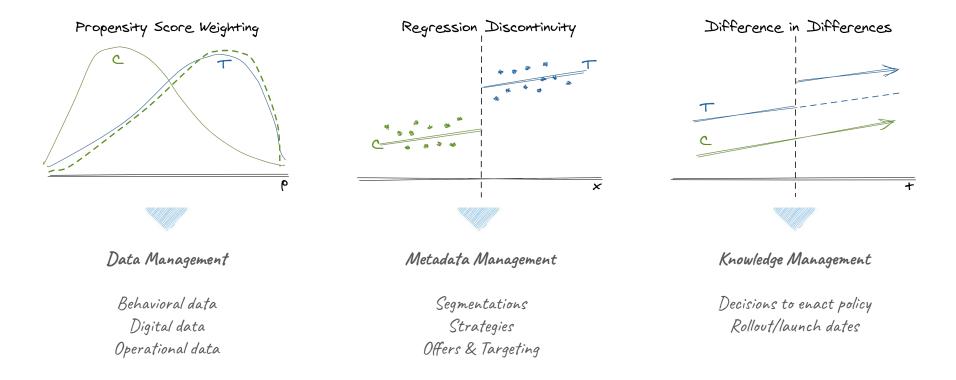
Diff-in-diff extension for richer time series

Org Implications

Successful causal inference requires a mix of skills & capabilities



Holistic data management can help us find the 'sparks' we need



Questions?

\downarrow Get in touch \downarrow

@emilyriederer on <u>Web</u> / <u>Twitter</u> / <u>GitHub</u> / <u>LinkedIn</u> / Gmail

 \downarrow Related blog posts \downarrow

<u>Causal design patterns</u> <u>Causal inference resource roundup</u>

 \downarrow Open access books \downarrow

<u>The Effect: an Introduction to Research Design and Causality</u> by Nick Huntington-Klein <u>Causal Inference: the Mixtape</u> by Scott Cunningham <u>Causal Inference: What If?</u> by Miguel Hernan <u>Introduction to Causal Inference</u> by Brady Neal <u>Causal Inference for the Brave and True</u> by Matheus Alves

Thank you!